2D Hive Plots

3D Hive Plots

Tech Details

HiveR: 2D & 3D Hive Plots + Hive Panels

New Tools for Network Visualization

DEPAUW UNIVERSITY

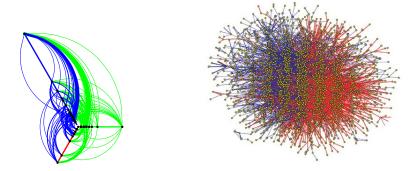
Est. 1837

Bryan A. Hanson

DePauw University Dept of Chemistry & Biochemistry Greencastle Indiana USA

e-mail: hanson@depauw.edu github.com/bryanhanson/HiveR CRAN.R-project.org/package=HiveR

> Special Thanks to Martin Krzywinski!


> > Powered by knitr

3D Hive Plots

Tech Details

Inspiration & Motivation

Developed by Martin Krzywinski at the Genome Sciences Center (www.hiveplot.com) Krzywinski et. al. Briefings in Bioinformatics doi:10.1093/bib/bbr069 (2011)

Rual et. al. Nature vol 437 pg 1173 (2005)

- "Hairball" style networks \neq reproducible research
- Hive Plots use a node coordinate system

bkgnd ○●○○○○○○○

3D Hive Plots

Tech Details

Application Areas

- Ecology: food webs
- Social networks
- Systems biology: protein-protein interactions, gene regulatory networks, genomic architecture
- Biochemistry: metabolic pathways
- Computer science
- In the spirt of Cleveland & Tufte...

Tech Details

Characteristics of Hive Plots

- Hive Plots are transparent:
 - Hive Plots are Rational: the layout is determined only by the structural properties of the network (no algorithm)
 - Hive Plots are Predictable & Reproducible: network features are mapped to plot features
 - Hive Plots are Robust to changes in the network
- Hive Plots are practical:
 - Hive Plots are Flexible & can be tuned to show interesting features
 - Complexity Scales Well in a Hive Plot & details can be inspected
 - Hive Plots of different Networks can be Directly Compared
- Most powerful with large networks, where hidden patterns emerge

2D Hive Plots

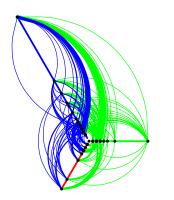
3D Hive Plots

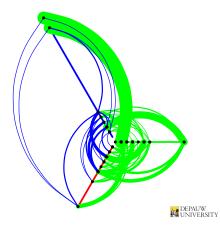
Tech Details

Early Implementation: FuncMap

Function calls in R packages are divided into 3 types:

- Sources, which are functions that only call other functions
- Sinks, which are functions that only get called
- Managers, which do both
- Info from foodweb in package mvbutils
- Mapping:
 - Functions in a package are assigned to an axis by their role
 - Radius is determined by the number of calls made or received by a function
 - Width of the edges is determined the same way

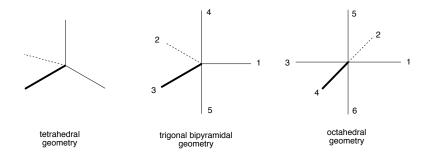

3D Hive Plots


Tech Details

Early Implementation: FuncMap

lattice

ggplot2



3D Hive Plots

Tech Details

What Exactly is HiveR?

- HiveR is an implementation of Hive Plots in R, not a port of the original Perl prototype
- ▶ There are also versions in *Java* & *D3* by others
- Value added: 3D plots were inspired by the ideas of VSEPR theory in chemistry (more later)

3D Hive Plots

Tech Details

Hive Plot Features Which Can Be Mapped

Axis to which a node is assigned Radius of a node Color of a node Size of a node Color of an edge Width of an edge

- Node assignment can be based upon qualitative or quantitative characteristics:
 - ▶ 1st & hardest task: no jumping or crossing axes allowed
- Mapping is limited only by one's creativity & the particular knowledge domain
- Mapping can be readily tuned
- Mapping network parameters in this way results in a reproducible plot

bkgnd ○○○○○○●○

3D Hive Plots

Tech Details

Hive Plots: Axis Units/Scaling Options

After assignment, the 2nd aspect of the node coordinate system

method	axis length	center hole	node behavior
native	f(node units)	asymmetric	nodes may overlap
ranked	\propto rank(nodes)	circular	nodes evenly spaced
			& don't overlap
normed	all equal	circular	nodes may overlap
ranked &	all equal	circular	nodes evenly spaced
normed			& don't overlap

Tech Details

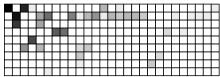
HiveR Utilities

- Generation of random networks (ranHiveData)
- Import data (dot2HPD, adj2HPD)
- Extract embedded information (mineHPD)
 - node degree \rightarrow node radius
 - node role (source, manager, sink) \rightarrow node axis
 - delete orphaned nodes, zero-length edges
- Scale or invert an axis (manipAxis)
- Check integrity of the HPD (chkHPD)
- Summarize HPD (sumHPD)
 - Find orphaned nodes
 - Check for edges that jump axes
 - Check for edges that start & end on the same axis
 - Report a list of edges to be drawn

A Simple Example Using a Plant-Pollinator Network

- Data set Safariland¹ from package bipartite
- Describes plant-pollinator pairs & the number of visits during a fixed observation period
- Observations at several different habitats/sites
- Two sites have been converted to HPD format:
 - Safari from an undisturbed area
 - Arroyo from an area grazed by cattle

¹Vazquez & Simberloff, *Ecology Letters* vol 6 pg 1077 (2003)

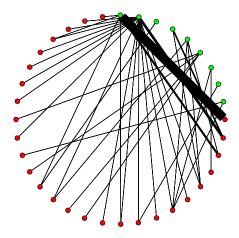

2D Hive Plots

3D Hive Plots

Tech Details

Plant-Pollinator Network: Function visweb in Package bipartite

Thomisidae Braconidae2 Manuelia gayi Allograpta. Toxomerus Staphilinidae Torymidae2 Formicidae3 Svastrides melanura Corynura prothystere: Ruizantheda proxima jaffuel Policana albopilos: Bombus dahlbom Platycheirus Vespula germanic: Ichneumonidae Chalepogenus caeruleu Trichophthalma amoen Ruizantheda mutabili Ichneumonidae Syrphus octomaculatu Phthiri Braconidae Sphecida Sapromyza.Minett Nitidulida Phthiria Trichophthalma

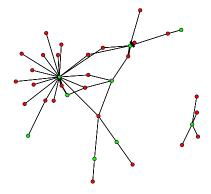

2D Hive Plots

3D Hive Plots

Tech Details

Plant-Pollinator Network: Function gplot in Package sna

Plant nodes green, insect nodes red, mode = circle


2D Hive Plots

3D Hive Plots

Tech Details

Plant-Pollinator Network: Function gplot in Package sna

Plant nodes green, insect nodes red, mode = fruchtermanreingold

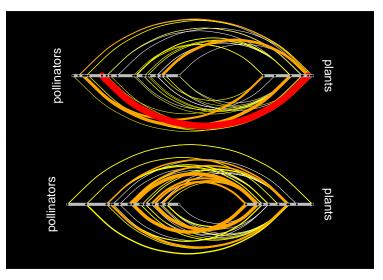
2D Hive Plots

3D Hive Plots

Tech Details

Plant-Pollinator Network: 2D Hive Plot

- Plants vs. pollinators
- ▶ Node radius is | *d*′ |
- Edge weights are $\propto \sqrt{no.visits}$
- Edge colors like weights; redder = more visits



2D Hive Plots

3D Hive Plots

Tech Details

Safari (undisturbed) vs. Arroyo (grazed): Hive Panel

Plant-Pollinator Network: 2D Hive Plot

- The degree of specialization in each network is different
- A greater number of visits (wider, redder edges) occur between more specialized species (nodes at larger radii) in Safari than Arroyo
- Plants in Arroyo have a larger range of specialization: the plant axis is longer
- The huge number of visits encoded in red in Safari (the ungrazed site) is missing in Arroyo, which was an interesting finding in the study
- Note that deleting nodes & edges does not affect those remaining

2D Hive Plots

3D Hive Plots

Tech Details 000000

Nuances of Hive Plots

- Hive Plots are radially-arranged parallel coordinate plots
- Assigning the nodes is the most time-consuming task (no jumping/crossing of axes)
- Nodes cannot be assigned w/o thinking about the edges as well (next slide)
- Not all data sets can be made into Hive Plots
- Hive Plots are directionally agnostic. Almost.
- If drawn using native or normed coordinates, nodes may overlap. The nodes "on top" & showing are the last drawn nodes. You may wish to sort the nodes before drawing to get a certain effect – the same is true for edges
- Only deals with one network at a time

2D Hive Plots

3D Hive Plots

Tech Details

Nuances of Hive Plots

As with any parallel coordinate plot, the order of axes has a dramatic effect

- 2D Hive Plots
 - With 2 or 3 axes, edges cannot jump axes. For 4+ axes, you must guard against this:
 - \blacktriangleright Edges should go 1 \rightarrow 2, 2 \rightarrow 3, \ldots 5 \rightarrow 6, but not 1 \rightarrow 5
- ► 3D Hive Plots
 - No edges can start & end on the same axis
 - For 5 or 6 axes, edges may not start on one axis & end on a co-linear axis
 - For 4 axes, edges cannot jump axes. For 5 or 6 axes, you must guard against this.

2D Hive Plots

3D Hive Plots

Tech Details

A More Complex Example: *E. coli* Gene Regulatory Network²

- Raw data is composed of genes that regulate each other via transcription factors
- Steps to Create a Hive Plot:
 - 1. Using dot2HPD & helper files, create the initial HPD
 - 2. Edges colored by role (activator, repressor, dual) during import
 - 3. Assign node radius based upon degree
 - 4. Assign axis based upon source, sink, manager role
 - 5. Remove zero-length edges
 - 6. Sort edges

²Yan et. al. PNAS vol 107 pg 9186 (2010), based upon RegulonDB

2D Hive Plots

3D Hive Plots

Tech Details

E. coli Network: Sample Dot File

Only a very small portion of the Dot standard is followed at this time

##	[1]	"zrar [label=nonpersistent];"		
##	[2]	"zras [label=nonpersistent];"		
##	[3]	"zwf [label=nonpersistent];"		
##	[4]	"arca phantom_gene [type=0];"		
##	[5]	"crp phantom_gene [type=0];"		
##	[6]	"fnr phantom_gene [type=0];"		
##	[7]	"fur phantom_gene [type=0];"		
##	[8]	"arca acea [type=1];"		
##	[9]	"crp acea [type=0];"		

Tech Details

Importing Dot Files: Sample Mapping Instructions

Node Mapping Instructions

dot.tag	dot.val	hive.tag	hive.val	
label	persistent	color	red	
label	nonpersistent	color	black	

Edge Mapping Instructions (used in next example)

dot.tag	dot.val	hive.tag	hive.val
interaction	repressor	color	red
interaction	activator	color	green
interaction	dual	color	orange

2D Hive Plots

3D Hive Plots

Tech Details

E. coli Network: Create the Initial HPD

The edge mapping instructions color the edges in this process

```
sumHPD(EC1)
## E coli gene regulatory network (RegulonDB)
## This hive plot data set contains 1597 nodes on 1 axes and 3893 edges.
## It is a 2D data set.
##
## Axis 1 has 1597 nodes spanning radii from 1 to 1
##
## Axes 1 and 1 share 3893 edges
##
```


2D Hive Plots

3D Hive Plots

Tech Details

E. coli Network: Assign Node Degree to Radius

```
EC2 <- mineHPD(EC1, option = "rad <- tot.edge.count")
sumHPD(EC2)
## E coli gene regulatory network (RegulonDB)
## This hive plot data set contains 1597 nodes on 1 axes and 3893 edges.
## It is a 2D data set.
##
## Axis 1 has 1597 nodes spanning radii from 1 to 434
##
## Axes 1 and 1 share 3893 edges
##</pre>
```


2D Hive Plots

3D Hive Plots

Tech Details

E. coli Network: Assign Nodes to Axis

EC3 <- mineHPD(EC2, option = "axis <- source.man.sink") sumHPD(EC3) ## E coli gene regulatory network (RegulonDB) This hive plot data set contains 1597 nodes on 3 axes and 3893 edges. ## ## It is a 2D data set. ## Axis 1 has 45 nodes spanning radii from 1 to 83 ## ## Axis 2 has 1416 nodes spanning radii from 1 to 11 Axis 3 has 136 nodes spanning radii from 2 to 434 ## ## ## Axes 1 and 2 share 400 edges ## Axes 1 and 3 share 21 edges Axes 3 and 2 share 3158 edges ## Axes 3 and 3 share 314 edges ## ##

2D Hive Plots

3D Hive Plots

Tech Details

E. coli Network: Clean Up Some Problems

EC4 <- mineHPD(EC3, option = "remove zero edge")</pre>

##

125 edges that start and end on the same point were removed

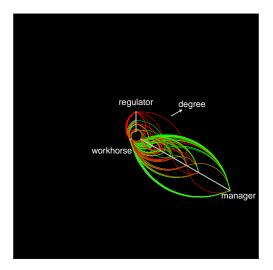
sumHPD(EC4)

E coli gene regulatory network (RegulonDB) This hive plot data set contains 1597 nodes on 3 axes and 3768 edges. ## ## It is a 2D data set. ## ## Axis 1 has 45 nodes spanning radii from 1 to 83 Axis 2 has 1416 nodes spanning radii from 1 to 11 ## ## Axis 3 has 136 nodes spanning radii from 2 to 434 ## Axes 1 and 2 share 400 edges ## Axes 1 and 3 share 21 edges ## ## Axes 3 and 2 share 3158 edges ## Axes 3 and 3 share 189 edges

Tech Details

E. coli Network: Interpreting the Hive Plot

- Nodes to axes according to role: regulator, workhorse, or manager
- Node radius = edge count/degree
- Edges colored according to role:
 - repressors: red
 - activators: green
 - dual function: orange

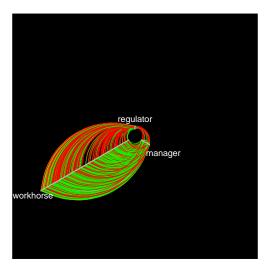

2D Hive Plots

3D Hive Plots

Tech Details

E. coli Gene Regulatory Network

Axes plotted using native units

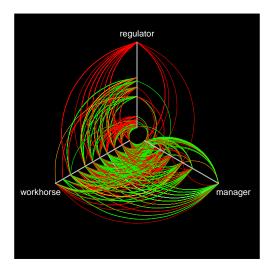

2D Hive Plots

3D Hive Plots

Tech Details

E. coli Gene Regulatory Network

Axes plotted using ranked units

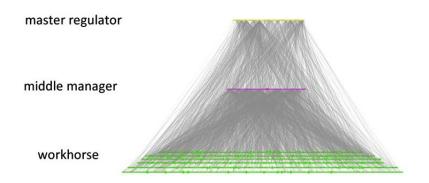

2D Hive Plots

3D Hive Plots

Tech Details

E. coli Gene Regulatory Network

Axes plotted using normalized units

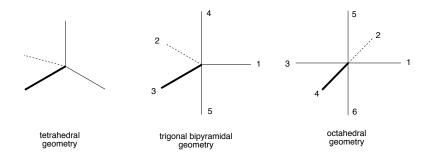


2D Hive Plots

3D Hive Plots

Tech Details

E. coli Gene Regulatory Network: Compare to Yan et. al.

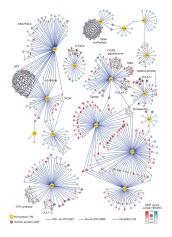


3D Hive Plots

Tech Details

3D Hive Plots

- Interactive using rgl graphics
- More adjacent axes than for 2D Hive Plots
 - ► Tetrahedron: 8 adjacent axis pairs, *crossings impossible*
 - Trigonal bipyramid: 9 adjacent axis pairs
 - Octahedron: 12 adjacent axis pairs
- Other approaches to 3D networks...



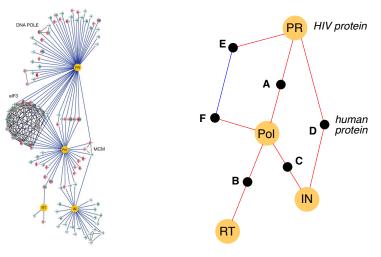
3D Hive Plots

Tech Details

Let's Make a 3D Hive Plot

Global Landscape of HIV-Human Protein Complexes³

- Available data:
 - HIV- human protein interactions
 - Human-human protein interactions
 - MiST scores (strength of protein-protein affinity)
 - x 2 cell lines

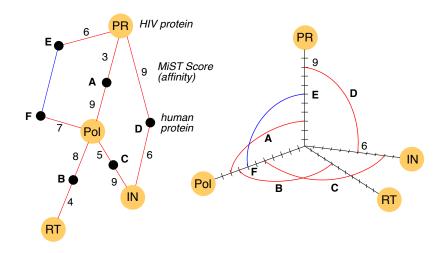

³Jäger *et. al. Nature* vol 481 pg 365 (2012)

2D Hive Plots

3D Hive Plots

Tech Details

Focus on One Subnet & Conceptualize the Mapping

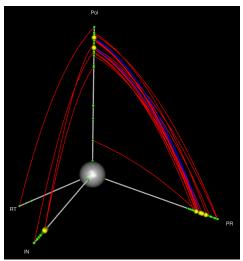


2D Hive Plots

3D Hive Plots

Tech Details

Details of the Mapping Process



3D Hive Plots

Tech Details

3D Hive Plot: Static View

HIV-human interactions in red, radius = MiST score with HEK cells, native units HIV \rightarrow human \rightarrow human \rightarrow HIV interactions in blue Proteins w/ \geq 2 edges shown as larger yellow nodes, otherwise green

2D Hive Plots

3D Hive Plots 00000● Tech Details

3D Hive Plot

HIV-human interactions in red, radius = MiST score with HEK cells, native units HIV \rightarrow human \rightarrow human \rightarrow HIV interactions in blue Proteins w/ \geq 2 edges shown as larger yellow nodes, otherwise green

Tech Details •00000

Possible Extensions (the To-Do list)?

- Subtract 2 hive plots & display the result
- Automatically permute the axes in 3D mode with 5 or 6 axes so that the best option can be selected
- Hovering brings up node or edge label (may need to go to a different graphics system)
- More ways to import/mine (better Dot compliance)
- Change splines to bezier curves
- What would you like to see?

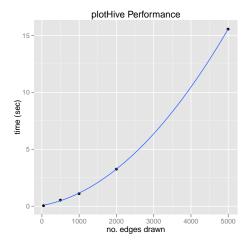
Tech Details

HiveR vs. Perl Prototype

- 1. In the prototype one can clone an axis to show connections that would start and end on the same axis.
- In HiveR, one can simply add a new axis based upon some property of the system. Alternatively, for 2D hive plots, HiveR is able to show edges that start & end on the same axis.
- 3. No segmentation of an axis is currently possible with HiveR
- The prototype uses bezier curves to create the edges; HiveR uses splines with a single control point

3D Hive Plots

Tech Details

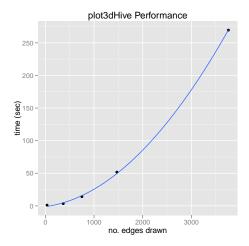

HivePlotData Objects

\$nodes				
	\$id	int	Node identifier	
	\$lab	chr	Node label	
	\$axis	int	Axis	
	\$radius	num	Node Radius	
	\$size	num	Node size	
	\$color	chr	Node color	
\$edges				
	\$id1	int	Starting node id	
	\$id2	int	Ending node id	
	\$weight	num	Width of edge	
	\$color	chr	Edge color	
\$type		chr	2D or 3D plot	
\$desc		chr	Description	
\$axis.cols		chr	Colors for axes	
- attr		chr	"HivePlotData"	

Tech Details

Performance: 2D Hives Using grid Graphics

MacBook Pro running OSX 10.7.4 using 8 GB RAM & an Intel i7 chip at 2 GHz

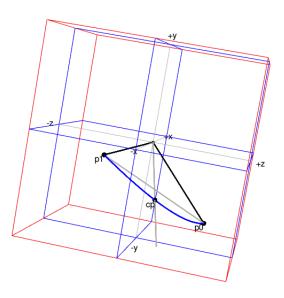

2D Hive Plots

3D Hive Plots

Tech Details

Performance: 3D Hives Using rgl Graphics

MacBook Pro running OSX 10.7.4 using 8 GB RAM & an Intel i7 chip at 2 GHz



2D Hive Plots

3D Hive Plots

Tech Details 00000●

3D Spline Curves

