Preliminary Metabolomic Investigation of Saline-Stressed Portulaca oleracea using ${ }^{1} \mathrm{H}$ NMR

DEPAUW UNIVERSITY

Est. 1837

Paulina J. Haight ${ }^{\star}$, John S. Harwood${ }^{\wedge}$, \& Bryan A. Hanson*ぇ

-Dept. of Chemistry \& Biochemistry, DePauw University, Greencastle, Indiana USA
${ }^{\wedge}$ Interdepartmental NMR Facility, Purdue University, West Lafayette, Indiana USA
*hanson@depauw.edu

Background
Portulaca oleracea, commonly known as Purslane is a weedy medicinal plant which is also used fresh or cooked in many cultures. A wide range of medicinal properties have been attributed to Purslane, and many of is medicinal properties may be due to polysaccharides and/or polyunsaturated fatty acids, especially α-linolenic acid. We are interested in Purslane as
a model for medicinal plants under stress such as drought, high temperatures and high salinity, the stressors expected as the climate warms.

Experimental Design

We grew two varieties of Purslane, a commercially available Tall Green variety ($\mathrm{T}-16$) and a wild strain collected in Wisconsin (WI-9), under two conditions: tap
water, and tap water containing 200 mM NaCl. Morwater, and tap water containing 200 mM NaCl . Mor-
phological parameters were measured as evidence of phological parameters were measured as evidence of stress on fitness, and in other studies in our lab, we have measured antioxidants, betalain pigments and expected for salt-stressed plants. Here we focus on global change using a metabolomics approach. The diagram below summarizes the $G \times E$ (genotype by environment) experiments. The number above the slash is the total plants, the number below the slash the number used in the NMR study.

Extractions, Data Collection \& Processing
Purslane leaves were ground in LN_{2} and then extracted with 50% methanol in water. The extracts were filtered, concentrated to dryness, and dissolved
in $600 \mu \mathrm{~L} 100 \mathrm{mM}$ phosphate buffer at $\mathrm{pH}=6.86+$ $200 \mu \mathrm{~L} \mathrm{D}_{2} \mathrm{O}$ containing 1% TSP. After a final filtration, ${ }^{1} \mathrm{H}$ NMR spectra were collected using a Bruker Avance 500 MHz instrument equiped with a TBI probe. A 1D NOESY pulse sequence was used with water suppression. The spectra were aligned on TSP and regions containing the water peak and TSP were removed. Spectra were normalized to total area. All chem
age.

Effect of Salinity on Fitness
The effect of salinity on reproductive fitness was demonstrated in several ways; here we show that stress.

Sample Spectra
The figure below shows typical spectra from each G_{x} E combination.
P. oleracea NMR Spectra

Heirarchical Cluster Analysis
HCA on the raw spectra shows clustering of the no salt samples together, regardless of genotype. The high salt treatments also cluster together, but separa tion by genotype is evident.

Principal Components Analysis
Principal components analysis on the unscaled spectra also shows clear separation into the groups indentifed by HCA. In particular, each genotype in the high salt treatment moves in a different direction along PC2.

As seen below, six principal components explain about 90% of the variation in the raw spectra. However, using just the first three PCs, MANOVA shows that all factors are significant.
P. oleracea NMR Spectra : Scores by PC

MANOVA on PCs 1 to 3

Having demonstrated a significant separation of samples based upon the $G \times E$ condition, the next step is ples based upon the $\mathrm{G} \times \mathrm{E}$ condition, the next step is
to investigate which compounds are up or down regulated and likely responsible for the decreased fitness observed under salt stress. In turn, this requires finding the peaks that drive the PCA separation. Examination of PC1 loadings (next figure) shows that much of the sample des
$\delta 2.5-4.5$ range.

Another valuable approach to finding significant peaks is the S -plot, shown below. The peaks in the extreme corners, where a high correlation suggests a reliable noise, are of greatest interest.

We can combine these different approaches by select ing the peaks with the most extreme loading values, nd then among those, the peaks which are found in loadings $> \pm 0.02$ and the most extreme 20% of peaks in the S-plot. This narrows the results down to shitt anges for focused investigation (highlighted in the fig ure below).

Compounds \& Pathways of Interes
In addition to identifying the peaks that appear to be the most important markers generally, we need to identify which compounds correspond to these peaks. Nicholson's STOCSY (Statistical Total Correlation Spectroscopy) is an important tool in this regard. The figure below shows the STOCSY plot for the busiest region of the spectrum. This plot is inStrong cross peaks are indicative of peaks from the same compound and can be followed to make a tentative identification. Somewhat less strong cross peaks are expected from different compounds which belong to the same metabolic pathway and are up or downregulated in a coordinated manner.
P. oleracea NMR Spectra: STOCSY Plot

Next Steps
We are currently studying the STOCSY, loadings and S -plot results to identify which specific compounds are involved in the response to saline stress in Purslane.

References

ChemoSpec: Exploratory Chemometrics for Spectroscopy, Bryan A. Hanson (2013) R package ver 1.61-0
S. L. Robinette, J. C. Lindon \& J. K. Nicholson "Statistical Spectroscopic Tools for Biomarker Discovery 85, pg. 5297 (2013) and references therein.

Acknowledgements
We thank DePauw University for financial support to acquire NMR spectra, and Prof. Dana Dudle for sage advice.

